A Novel MgO-CaO-SiO2 System for Fabricating Bone Scaffolds with Improved Overall Performance
نویسندگان
چکیده
Although forsterite (Mg₂SiO₄) possesses good biocompatibility and suitable mechanical properties, the insufficient bioactivity and degradability hinders its further application. In this study, a novel MgO-CaO-SiO₂ system was developed by adding wollastonite (CaSiO₃) into Mg₂SiO₄ to fabricate bone scaffolds via selective laser sintering (SLS). The apatite-forming ability and degradability of the scaffolds were enhanced because the degradation of CaSiO₃ could form silanol groups, which could offer nucleation sites for apatite. Meanwhile, the mechanical properties of the scaffolds grew with increasing CaSiO₃ to 20 wt %. It was explained that the liquid phase of CaSiO₃ promoted the densification during sintering due to its low melting point. With the further increase in CaSiO₃, the mechanical properties decreased due to the formation of the continuous filling phase. Furthermore, the scaffolds possessed a well-interconnected porous structure and exhibited an ability to support cell adhesion and proliferation.
منابع مشابه
Synthesis and Cell Seeding Assessment of Novel Biphasic Nano Powder in the CaO–MgO–SiO2 System for Bone Implant Application
Objective(s): CaO–MgO–SiO2 system bioceramics possess good characteristics for hard tissue engineering applications. The aim of the study was to synthesize the nano powder by using a sol-gel method and evaluate of bioactivity in the cells culture. Methods: To characterize of powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and to eva...
متن کاملNano SiO2 and MgO Improve the Properties of Porous β-TCP Scaffolds via Advanced Manufacturing Technology
Nano SiO2 and MgO particles were incorporated into β-tricalcium phosphate (β-TCP) scaffolds to improve the mechanical and biological properties. The porous cylindrical β-TCP scaffolds doped with 0.5 wt % SiO2, 1.0 wt % MgO, 0.5 wt % SiO2 + 1.0 wt % MgO were fabricated via selective laser sintering respectively and undoped β-TCP scaffold was also prepared as control. The phase composition and me...
متن کاملThe Effect of Nano-Additives on the Hydration Resistance of Materials Synthesized From the MgO-CaO System (RESEARCH NOTE)
In this study, the effect of variety of Nano- additives doping on the hydration resistance of the MgO-CaO system was investigated. Samples were prepared from calcined dolomite and magnesite. Nano-additives that contained cations with various valences (trivalent and tetravalent) used as a dopant. The bulk density, apparent porosity and hydration resitance were studied and evaluated. Also, phase...
متن کاملMECHANICAL AND CHEMICAL PROPERTIES OF SiO2-Al2O3-CaO-MgO (R2O) GLASS CERAMICS IN THE PRESENCE OF VARIOUS NUCLEATING AGENTS
Abstract: The application of inexpensive materials such as copper, zinc, lead, iron and steel slag in manufacturing of glass and glass-ceramic products in construction industry, lining materials as anti-corrosion and anti-abrasion coatings in metals and etc, has led to considerable progress in glass technology in recent years. The composition of slag glass-ceramics is mainly located in the ...
متن کاملIbuprofen-Loaded CTS/nHA/nBG Scaffolds for the Applications of Hard Tissue Engineering
Background: This study addressed the development of biodegradable and biocompatible scaffolds with enhanced biomechanical characteristics. The biocompatibility and the cationic nature of chitosan (CTS) make it more effective as a bone grafting material. Methods: The hydroxyapatite nanoparticles (nHA) were synthesized by hydrothermal method, and bioglass (nBG) (50% SiO2-45% CaO-5% P2O5) was synt...
متن کامل